Inter-Regional Travel Model Project

Jointly Undertaken by:

Mountainland Association of Governments,
Wasatch Front Regional Council,
Utah Transit Authority,
Utah Department of Transportation, and
Governor's Office of Planning and Budget

3/9/2000

Introduction

- This presentation provides an overview of the integrated travel model currently under development for Mountainland Association of Governments and Wasatch Front Regional Council
- The model is being developed under contract with the firms of Michael Baker, Jr. and Urban Analytics

Project Goals

- Provide a better understanding of interregional commuting patterns through the Integration of the MAG and WFRC travel models
- Provide an integrated analytical model for the Inter-Regional Corridor Study

Basic Model Assumptions

- Transportation: The movement of people, goods and information from one place to another.
- Basic Modeling Premise: Through the careful observation of people's existing travel behavior we can project those behavior patterns into future travel activity.

1993 Home Interview Survey

 Mountainland and the WFRC contracted with Applied Management & Planning Group in Los Angeles to conduct a home interview survey for their two MPOs.

	ALL CASES	WFRC	MAG
Number of Households	3,082	2,181	901
Number of People	8.333	5.654	2.679
Number of Activities	49,282	32,880	16,402
Number of Trips	40,949	27,226	13,723

Selected Demographics Per Household

	ALL CASES	WFRC	MAG
Household Size (All Ages)	3.14	2.99	3.51
Household Size (Age 5 and Older)	2.75	2.64	3.03
Vehicles per Household	1.97	1.95	2.01
Licensed Drivers per Household	1.93	1.89	2.05
Workers per Household	1.34	1.32	1.39
School-aged Children per Household	0.77	0.70	0.93
College Students per Household	0.25	0.20	0.36

Model Databases

- Socio-Economic Database (Traffic Analysis Zones)
 - Households stratified by persons per household and number of vehicles per household
 - Income per household
 - Employment
- Highway Database
 - Street and Highway link characteristics
- Transit Database
 - Transit routes classified by type of service

Vehicle Availability Model **Models Tested**

Logit Model Formulation

$$Prob(n) = \frac{e^{U_x}}{\sum_{i=0}^{n_{\text{max}}} e^{U_i}}$$

Where:

Pr ϕ b(n) = the probability that households will own n vehicles (n=0,1,...n_{max})

e = the base of Naperian logarithms

nmax = the largest vehicle availability category

Un,Ui = the utility of owning "n" household vehicles

The utilities, U_n are defined as

$$U_{n} = b_{n0} + \sum_{j=1}^{n} b_{nj} X_{nj}$$

Where:

 X_{ni}

 b_{n0} = a statistically estimated constant associated with having n vehicles

= a statistically estimated coefficient indicating the relative importance

of variable X_{ni} on the utility of vehicle availability level n

= a variable specific to the the zone of residence

The 1992 Portland Logit Model

For zero-auto households:

U = -1.684 - 0.881 * HHSIZE - 1.452 * WRKRCL + 3.255 * INCOM1 + 1.942 * INCOM2 + 0.000220 * RET1M + 0.00001063 * TOTAL30T + 0.29095 * PEF

For one-auto households:

U = 1.497 - 0.720 * HHSIZE - 1.065 * WRKRCL + 2.259 * INCOM1 + 1.944 * INCOM2 + 1.033 * INCOM3 + 0.000132 * RET1M + 0.00000615 * TOTAL30T + 0.0902 * PEF

For two-auto households:

U = 1.619 - 0.141 * HHSIZE - 0.660 * WRKRCL + 0.377 * INCOM1 + 0.555 * INCOM2 + 0.0478 * INCOM3 + 0.000060 * RET1M + 0.00000334 * TOTAL30T + 0.0337 * PEF

For three-or-more-auto households:

U = 0

Where:

RET1M

TOTAL30T

U(n) = Utility

HHSIZE = Number of persons in zone/segment

WORKERCL = Number of workers in zone/segment INCOMn = Dummy variable equal to one if the average of the segment in zone.

= Dummy variable equal to one if the avg. household income level is n

= Number of retail employees within 1 mile

= Number of employees within 30 minutes of travel time via the

transit mode

PEF = Pedestrian environment factor

Modeled vs. Observed

Vehicle Availability by Household Size

Model Percent - Observed Percent

HHSIZE	0	1	2	3+
1	-0.09%	2.29%	-2.79%	0.59%
2	2.18%	7.59%	-6.15%	-3.63%
3	-1.54%	-2.84%	9.75%	-5.37%
4	-0.16%	-1.70%	5.00%	-3.14%
5	-0.19%	-2.21%	-3.33%	5.73%
6	-0.91%	-6.94%	-6.70%	14.55%

Traffic Analysis Zones

- TAZ attributes are compiled for each model year.
- Non-motorized travel attributes are also summarized by TAZ

Highway Database

- Links and Nodes
 - Nodes are point locations that define the end points of links.
 - Centroids are specialized nodes representing the center of activity in a TAZ.
 - Links are straight line representations of streets segments or corridors selected to be included in the highway network.
 - Link distance
 - | Speed
 - Number of lanes
 - Capacity per lane
 - Functional classification

Transit Database

- Routes
 - Type of service
 - Local
 - Premium
 - Express bus
 - Light rail
 - Commuter rail
 - Frequency of service

Build Highway Network

 The 1996 network shown on the right is color coded by functional classification.

Build Paths Between TAZ Centroids

- A set of "best" paths are determined by the model from each TAZ centroid to every other TAZ centroid in the network.
- "Best" is determined by a series of options available through the model.

Trip Generation

- The trip generation model calculates the number of trip productions and attractions produced by each TAZ by trip type.
 - Home-based work trips
 - Home-based school trips (college)
 - Home-based other trips
 - Non-home-based trips
- It also handles external-to-external, internal-to-external, and external-to-internal trips.

Internal-External Travel

The yellow circles represent External Stations where traffic enters and leaves the modeled area.

Trip Generation Summary

	1996		
Trip Purpose	Productions	Attractions	
Home-Based Work	888,624	1,006,275	
Home-Based Other	3,673,930	3,753,656	
Non-Home Based	2,034,712	2,034,712	
Internal-External	161,041	176,728	
Commercial	563,293	567,692	
TOTAL	7,321,600	7,539,063	

	Trip Distribution	
3/9/2000	22	

- Impedance
 - Function of Time and Distance

Impedance = $(\boldsymbol{a} \bullet \text{Time}) + (\boldsymbol{b} \bullet \text{Distance})$

where α and β are constants

Testing various combinations of constants to achieve best trip distribution model performance

- Home Interview Survey
 - Used to calibrate trip distribution model(s)
 - Observed trip length frequencies (TLF) derived by purpose, peak/off-peak
 - Steps
 - Error Checking
 - Trip Linking (17.2% HBW; 54.8% HBO; 28.0% NHB)
 - Derive observed (obs.) TLFs

Intra-Zonal Travel Time

$$IZ = \frac{[0.5 \times SQRT(Zone Area) \times 60]}{Speed(Area Type)}$$

- Friction Factors
 - Initial factors based on "default" values provided by gamma function form:

$$F_{ij} = e^a t^b e^{ct}$$

where a,b, and c vary by trip purpose

- Calibration Process
 - Initial Friction Factors
 - Gravity Model to calculate TLF
 - Update Friction Factors as a function of difference between obs. TLF and calculated value
 - Gravity Model to yield updated TLF
 - Compare to observed
 - Similar Shape
 - Avg. TLF; +/- 3% of obs. TLF
 - Iterate process as necessary

Home-Based Work

Impedance = 0.5*Time + 0.5*Distance

Home-Based Other

Impedance = 0.5*Time + 0.5*Distance

Non-Home Based
Impedance = 0.5*Time + 0.5*Distance

Internal-External Impedance = 0.5*Time + 0.5*Distance

Home-Based Work

Home-Based Other

Non-Home Bases

Internal-External

Trip Length Frequency Calibration Summary

Impedance = 0.5*Ti	5*Time + 0.5*Distance			
Trip Purpose	Observed	Modeled	Deviation	
Home-Based Work	13.41	13.01	-2.98%	
Home-Based Other	8.54	7.18	-15.93%	
Non-Home Based	9.51	8.67	-8.83%	
Internal-External	41.23	40.1	-2.74%	

Impedance = Uncongested Time (min.)

Trip Purpose	Observed	Modeled	
Home-Based Work	18.43	18.12	-1.68%
Home-Based Other	12.71	12.19	-4.09%
Non-Home Based	13.97	13.77	-1.43%
Internal-External	46.14	45.32	-1.78%

Mode Choice Model 3/9/2000 36

Enhanced HBW Mode Choice Model Structure

Proposed HBW Non-Motorized Model

- Based on Sacramento's Mode Choice Model
- Use of Transportation, Household, and Land Use/Urban Form Variables
- Applied to Four Strata of Households Determined by Number of Workers and Auto Availability
- Use of Pedestrian Environmental Factors (PEF),
 Consistent with the Auto Ownership Model

1993 Non-Motorized Observed Trips HBW

Household Category		Walk	Bike
1.	No Autos	3,400	260
2.	Workers> Autos	2,430	3,860
3.	Single-worker, min.		
	1 auto/worker	7,610	2,100
4.	Multi-worker, min.		
	1 auto/worker	9,840	2,470
	TOTAL	23, 280	8,690

Other Observed Data

• CTPP Regional Mode and Sub-Mode Shares

College Person Trip Table

College Observed Trips and Shares

Trip Assignment Continued

- Trip assignment allocates the trips from the mode choice model to each of the links along the "Best" paths between the TAZ centroids.
- Output impedence information is then fed back to the trip distribution model and the process is run again and again until the model reaches "convergence".